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We propose a method to study the second-order critical lines of classical spin-S Ising models on two-
dimensional lattices in a crystal or splitting field, using an exact expression for the bare mass of the underlying
field theory. Introducing a set of anticommuting variables to represent the partition function, we derive an exact
and compact expression for the bare mass of the model including all local multifermion interactions. By
extension of the Ising and Blume-Capel models, we extract the free-energy singularities in the low-momentum
limit corresponding to a vanishing bare mass. The loci of these singularities define the critical lines depending
on the spin S, in good agreement with previous numerical estimations. This scheme appears to be general
enough to be applied in a variety of classical Hamiltonians.
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Classical or quantum spin models play a central role in
the development of statistical physics, as they allow for test-
ing fundamental principles on model systems that are simple
enough to have a complete mathematical description. This is
particularly the case for the Ising model, which still serves as
a toy model to develop new techniques both in terms of
analytical methods �series expansions, renormalization� and
numerical algorithms �Metropolis, Swendsen-Wang�. The
fact that an analytic solution is available in the two-
dimensional case provides a reference point for the further
understanding of critical phenomena. While the case of the
spin S=1 /2 is well understood, much less is known about the
extension for spins with higher values. In the early 70’s, Fox
and Guttmann1 successfully developed low-temperature se-
ries expansions, allowing for an estimation of the critical
temperatures and set of critical exponents for the Ising model
with spin S=1 and 3/2, in two and three dimensions. This
original work has later been extended to higher spin
values.2,3 High-temperature series expansions have also been
used in three dimensions4,5 and two dimensions,6 and then
extended to test universality and hyperscaling, as well as
spin-spin correlation functions.6,7 Another path of investiga-
tion is provided by the Fortuin-Kasteleyn transformation,8

which gives a fruitful link between Ising models and perco-
lation problems,9 leading to interesting results in the continu-
ous spin limit.10 Alternative approximation schemes have
been proposed to treat the general spin case, such as Ising
spin decomposition of the general spin-S model,11 an effec-
tive mean-field theory based on cumulant expansion12 and
Husimi tree calculation.13 However, despite this activity,
very few exact results have been obtained on the general
spin-S Ising models even in two dimensions. Results are
available for the special case S=1 in particular regions of the
phase diagram,14–17 and for the case S=3 /2.18 Recently, we
proposed an alternative approach to the Blume-Capel model
where S=1,19 using the representation of the partition func-
tion with Grassmann variables20 to determine the critical line
of this model. In this Brief Report, we extend this method to
study the general spin-S model. The first step is to expand
the partition function as a product of spin polynomials where
neighboring spins are coupled. We then introduce a set of

Grassmann variables21 to decouple the spins. The price to
pay for this is the lost of commutativity. However, using
specific symmetries, the sum over the spin degrees of free-
dom can be performed exactly, leading to the expression of
the partition function as a path integral over a fermionic ac-
tion on a lattice. Taking the thermodynamic limit of the ac-
tion allows us to identify the bare mass of the system. As-
suming that free-energy singularities correspond to the
vanishing mass, we obtain an excellent approximate location
of the critical points.

We consider now the general Hamiltonian on a two-
dimensional �2D� lattice of size L�L

H = − �
m=1

L

�
n=1

L

�J1�mn�m+1n + J2�mn�mn+1� + �0�
m=1

L

�
n=1

L

�mn
2 ,

�1�
where J1,2 are Ising coupling constants and �0 is a splitting
crystal field that favors small spin values. It can also repre-
sent a chemical potential in the Blume-Capel model. In the
Ising case, �mn

2 =1, and therefore �0 does not play any role.
This crystal-field term can be replaced by any potential
V��mn

2 � depending on the square of the local spin. The spins
�mn can take 2S+1 values with �mn=−S ,−S+1, ¯ ,S. We
assume here for simplicity that J1=J2=1 and K=�J1,2
=1 /kBT the inverse of temperature. The partition function,
which represents the sum over all possible spin configura-
tions Z=Tr��� exp�−�H�, contains products of the Boltz-
mann weights exp�K���� �where � and �� are neighboring
spins� which take q+1=S�S+1�+1 different values if S is an
integer, and q+1= �S+1 /2��S+3 /2� values if S is a half-
integer. Since there are q+1 possible values for each Boltz-
mann weight exp�K����, we can project each of them onto a
polynomial function of degree q in variable ���

exp�K���� = �
k=0

q

uk�����k = u0�
�=1

q

�1 + x����� , �2�

where the q+1 constants uk are determined by solving the
linear system of q+1 equations satisfied by the above rela-
tion. Note that the demonstration below holds for any func-
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tion of ��� in the Boltzmann factor, in the case where the
Hamiltonian �1� includes quadrupolar interactions �����2,
for example.18 Only the coefficients uk are different. In the
Ising case, S=1 /2 and q=1, we have exp�K����=ch�K /4�
+4sh�K /4����, and u0=ch�K /4�, u1=4sh�K /4�. In the
Blume-Capel model q=2 and it is easy to show that u0=1,
u1=sh�K�, and u2=ch�K�−1. For S integer we always have
u0=1, and from Eq. �2�, u1�k�q
=u0��1��2�¯��k

x�1
x�2

¯x�k
. We also set uk	q+1=0.

Let us now introduce q pairs of Grassmann variables
�amn

� , āmn
� � at each site for the horizontal direction and q ad-

ditional pairs �bmn
� , b̄mn

� � for the vertical direction.20,21 Here �
takes the values 1 , ¯ ,q. In total, there are 4q Grassmann
variables on each site of the lattice. The Ising model is usu-
ally represented by two pairs of Grassmann variables per site
which can be reduced afterward to one pair.20 We then use
the following integral representation for each couple of terms
�1+x��mn�m+1n� and �1+x��mn�mn+1� that appear in Boltz-
mann weights Eq. �2�:

1 + x��mn�m+1n =	 dāmn
� damn

� eamn
� āmn

�
�1 + amn

� �mn�

��1 + x�āmn
� �m+1n� ,

1 + x��mn�mn+1 =	 db̄mn
� dbmn

� ebmn
� b̄mn

�
�1 + bmn

� �mn�

��1 + x�b̄mn
� �mn+1� . �3�

From these expressions, we introduce the link factors Amn
�

=1+amn
� �mn, Ām+1n

� =1+x�āmn
� �m+1n, Bmn

� =1+bmn
� �mn, and

B̄mn+1
� =1+x�b̄mn

� �mn+1. Then the partition function can be
written as

Z

u0
2L2 = Tr

���
	 �

mn,�
dāmn

� damn
� db̄mn

� dbmn
� eamn

� āmn
� +bmn

� b̄mn
�

� �
mn

e��mn
2 
�

�

�Amn
� Ām+1n

� ��
�

�Bmn
� B̄mn+1

� �� ,

where �=−��0. Notice that inside the integral symbol, the

pairs of link factors in brackets �Amn
� Ām+1n

� � and �Bmn
� B̄mn+1

� �
can move freely. In particular, we can rearrange the products
over � and put together link factors having the same site
indices �m ,n� using the mirror ordering symmetry20

�
�=1

q

�Amn
� Ām+1n

� � = ��
�=1

→
q

Amn
� 
��

�=1

←
q

Ām+1n
� 
 ,

where the arrows indicate that the product is ordered, i.e.,
increasing label � in the first product from left to the right
and in the second one from right to the left. For convenience,

we set Omn=��
�Amn

� , Om+1n=��
�Ām+1n

� and Pmn=��
�Bmn

� ,

Pmn+1=��
�B̄mn+1

� . Then the partition function can be rewritten
as

Z

u0
2L2 = Tr

���
	 �

mn,�
dāmn

� damn
� db̄mn

� dbmn
� eamn

� āmn
� +bmn

� b̄mn
�

� �
mn

e��mn
2

�OmnOm+1n��PmnPmn+1� ,

� Tr

��,a,ā,b,b̄�

�

mn

e��mn
2

�OmnOm+1n��PmnPmn+1�� . �4�

At this stage, we use the mirror and associative symmetries
which were applied to the Ising model22 and which are still
valid here to rearrange the operators O, O, P, and P. The
computations are until now identical to the Ising case treated
in Refs. 22 and 23, in the sense that we obtain an expression
of the partition function with a set of anticommuting opera-
tors we would like to rearrange in order to perform the sum
over the individual spins. The only difference is that the pre-
vious operators O, O, P, and P are in general more compli-
cated functions of the 4q Grassmann variables coming from
the decomposition given by relation �2�. In principle, bound-
ary terms should be treated separately in order to obtain the
exact finite-size partition function. Periodic boundary condi-
tions can be treated rigorously for a finite lattice20,24,25 but
this is inessential in the thermodynamic limit L→
 we are
interested in here. We consider instead free boundary condi-
tions, leading to the exact expression

Z

u0
2L2 = Tr

��,a,ā,b,b̄�
��

n=1

→
L 
�

m=1

→
L

e��mn
2

�OmnPmnOmn��
m=1

←
L

Pmn�� .

Under this form, the spins can individually be summed over
from �Ln to �1n for any given n. We introduce the following
weights Wmn which include all the dependence on the indi-
vidual spin �mn:

Wmn = �
�mn=�1

e��mn
2

OmnPmnOmn,Pmn

� �
�mn=�1

e��mn
2 �

�=1

→
4q

�1 + cmn
� �mn� , �5�

where we have defined the following sets of Grassmann vari-
ables:

cmn
� = �

xq−�+1ām−1n
q−�+1 if � = 1, ¯ ,q ,

x2q−�+1b̄mn−1
2q−�+1 if � = q + 1, ¯ ,2q ,

amn
�−2q if � = 2q + 1, ¯ ,3q ,

bmn
�−3q if � = 3q + 1, ¯ ,4q .

�
The partial sum �Eq. �5�� can be performed by noticing that
only products involving an even number of �mn give a non-
zero contribution. We also define �k=��=−S

S �2k exp���2� and
the ordered products qmn

�k� =��1��2�¯��k
cmn

�1 cmn
�2
¯cmn

�k with
qmn

�0� �1. With these notations, it is easy to show that the
partial sum �Eq. �5�� gives the commuting objects
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Wmn = �
k=0

2q

�kqmn
�2k�,

with qmn
�4q�=cmn

1
¯cmn

4q the term of highest degree in Grass-
mann variables. Finally the fermionic representation of the

partition function reads Z=u0
2L2

Tr�a,ā,b,b̄��mnWmn. This is the
exact fermionic representation of the partition function for
any given spin-S model.

In some cases, the weights Wmn can be easily exponenti-
ated. For the Ising model, the argument of the exponential is
purely quadratic in the cmn

� ’s and therefore the partition func-
tion can be written as a determinant.23 In the Blume-Capel
model, the argument of the exponential is a polynomial of
degree 8 in Grassmann variables since there are eight inde-
pendent variables �4q=8�.19 In general we expect the argu-
ment to be at most a polynomial of degree 4q in these vari-
ables, which can sometimes be reduced by partial
integrations. Except for the case q=1 the partition function is
not solvable.

In the thermodynamic limit L→
, however, we expect to
be able to identify from the effective theory a massive and
purely kinetic contribution in the infrared region where the
continuous momenta k are small. The condition of criticality
is determined usually by the vanishing mass m of the effec-
tive theory. For example, in the Dirac or Majorana represen-
tation of the Ising model, the free energy, which is the inte-
gral over the Brillouin zone of momentum-dependent
quantities ln�m2+k2�, is singular at m=0. The action is de-
termined by the exponentiation of the Wmn quantities, de-
pending on the 4q Grassmannian fields, and is made of a
local part, containing all the local interactions, including two
fermion, three fermion, etc. interactions at a given site, and a
kinetic part containing all the terms involving space deriva-
tives of different orders. It is difficult to obtain the full fer-
mionic action with all the kinetic terms in the general case.
In this Brief Report, we will neglect the latter, assuming that
their contribution by renormalization to the mass is negli-
gible near the critical point. This is true for the Ising model
where the kinetic part is purely quadratic in Grassmann vari-

ables and does not renormalize the mass. Space symmetries
of these derivative terms also could prevent any renormaliza-
tion. Then we will show that the contribution to the partition
function coming from the local part only can be computed
exactly, which is not a quadratic action but a polynomial of
degree 4q, the number of variables involved, and this defines
a bare mass. We need for this to define first the formal de-
rivatives of Grassmann variables;26 for example, �xamn
=amn−am−1n and �yamn=amn−amn−1. Then the c’s coefficients
can be expressed in terms of these derivatives such as cmn

1

=xq�āmn
q −�xāmn

q �. In the limit of large L and in the Fourier
space, the first-order derivatives account in the action for a
small contribution in momenta k=2��m ,n� /L, with m ,n

L positive integers, when amplitudes �k� become small. In
this infrared regime, we assume here that we can neglect the
derivatives: cmn

1 �xqāmn
q , ¯ ,cmn

q �x1āmn
1 and cmn

q+1

�xqb̄mn
q , ¯ ,cmn

2q �x1b̄mn
1 ; the weights Wmn are then all de-

coupled, and the following bare mass mS can be defined:

mS

u0
2 =	 
�

�=1

q

dāmn
� damn

� db̄mn
� dbmn

� eamn
� āmn

� +bmn
� b̄mn

� �Wmn. �6�

The different integrals in Eq. �6� can be evaluated exactly by
noticing, for example, that the arguments of the exponential

bmn
� b̄mn

� can be combined with a amn
� �x�āmn

� � that appears in
some of the q�2k� products to give a contribution x�. Indeed
using the Grassmann integration rules �da .a=1 and �da.1
=0, we can write

	 dāmn
� damn

� db̄mn
� dbmn

� eamn
� āmn

� +bmn
� b̄mn

�
amn

� �x�āmn
� � = x�.

Since the q�2k� are ordered, there are also signs to take into
account and coming from moving the variables cmn

� before
integration. We obtain after some combinatorial algebra

mS = �
k=0

2q

�kRk, �7�

where we have defined the following quantities R0=u0
2:

TABLE I. Critical temperatures at �0=0.

Spin S S=1 /2 S=1 S=3 /2 S=2

q 1 2 5 6

tc 2.269 185 1.673 971 1.456 694 1.337 812

2.269a 1.689b 1.695c 1.461a,d,e 1.336a

1.694a 1.681d

Spin S S=5 /2 S=3 S→


q 11 12 


tc 1.262 542 1.210 534 0.925 148

1.257a 1.203a 0.915a,f

aReference 6.
bReference 1.
cReference 27.

dReference 28.
eReference 29.
fReference 10.
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FIG. 1. �Color online� Critical line for different values of S
=1,2 ,3, S=3 /2,5 /2, and S=
. In the latter case, the critical tem-
perature at �0=0 is tc�0.925 148, and at t=0 the curve reaches the
solution �0=4 /�3. The inset is a zoom on the region �0�2. The
critical curve for S=3 /2 has an asymptote �dotted vertical line� at
t=2 /9 log�1+�2��0.252 132.
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Rk = �
l=0

k

uluk−l��l,k − l� , �8�

and ��k , l�=1 if k and l are both even, and ��k , l�=−1 oth-
erwise. We now apply this result to different cases. For the
Ising model �S=1 /2� we obtain m1/2=2e�/4�1−sh�K /2��,
which vanishes at the normalized Ising critical temperature
tc=Tc /S2=2.269 185, independent of �0. For the Blume-
Capel model �S=1� we find m1=1+2e��1−sh�2K�� and for
S=3 /2

m3/2 = 2e�/4�1 − sh�K/2�� + 2e9�/4�1 − sh�9K/2�� . �9�

For general spin S, we can show that

mS = �
�=−S

S

e��2
�1 − sh�2�2K�� . �10�

Equation �10� gives the expression of the bare mass of a
general spin-S system, taking into account all possible local
fermion-fermion interactions. To go further we propose to
extract some physical information from the previous result in
different cases. In particular, for the simplest nonintegrable
case �Blume-Capel model S=1�, it is possible to write ex-
plicitly the complete fermionic action including the kinetic
part and to check Eq. �10� for m1.19 Note, however, that even
in this case a vanishing mass is a necessary but not sufficient
condition to have a critical point; kinetic terms of higher
order that appear in the effective fermionic action can change
the nature of the singularity. For the Blume-Capel model, for
instance, the critical line terminates at a tricritical point
which cannot be predicted by the mass alone.19

Tabulated values of tc at �0=0 are given in Table I for
several S, and compared with numerical results �Monte Carlo
simulations, high-temperature expansions� given in the lit-
erature. In general, the agreement is good.

For integer values of S �Blume-Capel model�, the critical

line goes from the Ising critical value tc=2 / log�1+�2� when
�0→−
 to the terminating point �tc=0, �0=2� continu-
ously. For half-integer values of S, there exists in general an
asymptote in the �t=T /S2 ,�0� plane. Indeed, for S=3 /2, Eq.
�9� predicts the solution

�0 = − �9t/8�log�− �1 − sh�2/9t�/1 − sh�2/t��� , �11�

which is bounded by tc=2 /9 log�1+�2��0.252 131 below
which there is no second-order critical line �see Fig. 1�. In
the large integer S limit, the model defined in Eq. �1� is
described by a continuous variable −1�xmn=�mn /S�1
�continuous Ising model�. We can obtain the limiting value
of the mass, Eq. �10�, becoming

mS�1 � S�2t	
0

�2/t
dx e−�0x2/2�1 − sh�x2�� . �12�

We observe that the rescaled mass mS /S vanishes when
�0=0 at tc�0.925 148, in fair agreement with numerical
works,6,10 and there is a nontrivial solution at t=0 which is
simply given by �0=4 /�3�2.309 401. Contrary to the finite
S models, the critical field predicted here is not equal to �0
=2, which gives the location of the first-order transition at
zero temperature but takes a slightly larger value.

By using Grassmann algebra to represent the partition
function of spin-S Ising Hamiltonians on 2D square lattices
as a fermionic theory, we were able to obtain the exact ex-
pression for the bare mass of the action, including all the
possible local fermionic interactions. This result gives at
least precise though approximate locations of second-order
critical points in the �T ,�0� plane. This scheme and its main
consequences, formulas �7� and �8�, are general enough to be
applied in a variety of classical Hamiltonians with next-
nearest-neighbor interactions and crystal-field-like potentials,
and possibly Potts-type models as well, with a suitable
choice of polynomial representation of the Boltzmann
weights.
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